
Abstract — This paper presents an efficient algorithm for
transient simulation of multi-port interconnect networks in
the presence of non-linear terminations. Krylov-subspace or-
der reduction techniques have been shown to provide a signif-
icant speed-up in the simulation of interconnect networks.
These methods however are far from optimal, and the result-
ing macromodel contains many redundant poles. In this pa-
per, a passive multi-level reduction technique is presented.
The proposed method eliminates the redundant poles, thus
resulting in significant CPU cost reduction.

I. INTRODUCTION

Due to the rapidly increasing operating frequencies, the
electrical length of interconnects is becoming a significant
fraction of signal wavelength. Consequently, interconnect
effects are becoming the dominant factors influencing sig-
nal integrity in high-speed systems [1], [2]. As a result, ef-
ficient and accurate transient simulation of interconnect
and packaging effects is becoming an essential step in the
design cycle. However, time-domain simulation requires
discretization of the distributed interconnects [1], leading
to large lumped RLC networks that may require prohibi-
tively high CPU cost. To improve the CPU efficiency, mod-
el-order reduction techniques were proposed in the
literature [3]–[7]. The objective of order reduction tech-
niques is to generate a small system that matches the be-
havior of the original large system. This goal can be
accomplished because, in general, only a fraction of the
poles of the original system have a significant effect on the
response over the frequency range of interest[1].

Recently, Krylov subspace-based methods have been in-
troduced as an effective tool for model-order reduction
[3]–[7]. However, a generally found difficulty with Krylov
subspace methods is the issue of redundant poles [3], [7].
When the order of the approximation is increased to en-
hance its accuracy range, a large number of redundant
poles are captured. This is illustrated in Fig. 1, which
shows the region in which the poles are captured using
Krylov subspace techniques, in contrast with the region
near the imaginary axis where the dominant poles tend to
concentrate. The difficulty arising due to the presence of
redundant poles is multifold: 1) The number of states is too

many to achieve a fast non-linear simulation, and 2) The
poles, which are far away from the imaginary axis, can
lead to smaller step sizes, resulting in slower transient sim-
ulation.

Fig. 1. Comparison of pole distribution

Some attempts have been made in the literature to ad-
dress the problem of redundant poles [7]. These methods,
based on the truncated balance realization (TBR) [8], have
been successful in significantly reducing the number of
states in the macromodel. However, the macromodels pro-
duced using TBR methods are not guaranteed to be pas-
sive. This is a major problem because non passive
macromodels can lead to instability in the simulation when
combined with nonlinear terminations [3], [4].

In this paper, a multi-level order reduction algorithm is
proposed to address the problem of redundant poles, while
guaranteeing the passivity of the resulting compact macro-
model. Application of the proposed technique to intercon-
nect circuits resulted in significantly smaller macromodels
and lower computational cost compared to conventional
Krylov subspace methods.

II. PROBLEM FORMULATION

Consider a multiport interconnect network with nonlin-
ear terminations (Fig. 2). The interconnect network con-
sists of lumped and distributed components. A lumped
representation of the linear subnetwork can be obtained by
discretizing the distributed components through simple
segmentation or through the use of more efficient tech-
niques such as the Padé Model[9].

The Modified Nodal Analysis (MNA) equations of the
resulting multiport linear lumped subnetwork can be ex-
pressed as
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(1)

Fig. 2. Large multi-port network.

where:
1) is the vector of node voltage waveforms ap-

pended by independent voltage source currents, linear
inductor currents, and port currents;

2) are constant matrices describing the
lumped memory and memoryless elements of the net-
work (C and G are constructed using the formulation
suggested in [4] in order to ensure the passivity of the
reduced order model);

3) u and I are vectors containing the port voltages and
currents;

4) , where ,
is a selector matrix that maps the port volt-

ages into the node space of the network and p is
the number of ports;

The objective of model reduction is to obtain a passive
reduced order macromodel of the form

(2)

Macromodels produced using Krylov subspace tech-
niques contain a large number of redundant poles[7]. The
multi-level reduction technique presented in this paper
eliminates the redundant poles while maintaining the pas-
sivity of the macromodel.

III. OVERVIEW OF THE ALGORITHM

The reduction algorithm proposed in this paper consists
of two main steps. First the Krylov subspace is obtained
using the Arnoldi process[10], and a passive reduced order
model is obtained through congruent transformation. An-
other level of reduction is then performed in order to re-
move the redundant poles while maintaining passivity.

A. First Level of Reduction

The first level of reduction is done by projecting the

original system in (1) onto an orthonormal basis K of the
Krylov subspace. The Block Arnoldi process with double
orthogonalization[6] is used to obtain K which is defined
as

, (3)

where

. (4)

The reduced system is then obtained through congruent
transformation such that

, (5)

where

. (6)

The reduced order system in (5), while much smaller
than the original system, still contains many redundant
poles[3][7]. This severely reduces the efficiency of the
transient simulation with nonlinear terminations. This
problem is addressed in the following section, where a sec-
ond level of reduction is used to remove the redundant
poles while maintaining passivity.

B. Second Level of Reduction

In a second level of reduction, the dominant poles are se-
lected based on their contribution to the response. The sys-
tem in (5) is then further reduced by projection onto an
orthonormal basis Q of the eigenspace of the dominant
poles. The resulting system is passive and preserves only
the dominant poles of the original network. The basis Q is
defined as

, (7)

where are eigenvectors corresponding to the dominant
eigenvalues of . The matrix Q is obtained from
the eigenvectors using an orthogonalization process such
as the Gram-Schmidt or the Householder techniques[10]. It
is to be noted that while the eigenvectors can be complex,
Q is made real by splitting the real and imaginary parts of
complex eigenvectors. The reduced order system is then
obtained as

, (8)

Gx Cẋ+ Bu=

I B
T

x=

i1

u1

ip

up

Large Interconnect

Network

N
on

-li
ne

ar
 T

er
m

in
at

io
ns

N
on

-li
ne

ar
 T

er
m

in
at

io
ns

x ℜn∈

C G ℜn n×∈,

B b
i j, 0 1,{ }∈[ ]= i 1 … n, ,{ }∈ j ∈

1 … p, ,{ }
ℜn

G̃x̃ C̃x̃̇+ B̃u=

I B̃
T

x̃=

colsp K[ ] colsp R AR A
2
R … A, k 1–

R,,,[ ]=

A G
1–
C= R G

1–
B=
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where

(9)

The final reduced system in (8) is passive by construc-
tion since the orthonormal projection matrix Q is real[4].

IV. PROOF OF PRESERVATION OF POLES

Consider a matrix which has an
eigenvalue  and corresponding eigenvector  such that

, or . (10)

An orthonormal basis containing the eigen-
vector vi ( ) can be constructed such that

, (11)

where . Substituting (11) into (10), and premulti-
plying by , we get

 or (12)

where

(13)

The reduced matrix has therefore as an
eigenvalue, with as a corresponding eigenvector. There-
fore, an orthonormal projection onto the eigenspace of
some selected eigenvectors preserves the eigenvalues cor-
responding to these eigenvectors. The fact that this can be
done through congruent transformation is critical for the
preservation of passivity.

V. PROOF OF PRESERVATION OF PASSIVITY

By substituting the values of , , and defined in
(6) into equation (9) the definition of the reduced system
can be written as

(14)

where K and Q are the orthonormal projection matrices
used in the first and second levels of reduction. By noting
that is also an orthonormal basis, the reduced
system can be written as a direct projection on the sub-

space S

(15)

The reduced order system can therefore be obtained by
congruent transformation using a real orthonormal basis S.
Due to the structure of the G and C matrices such reduced
order system is passive[4].

VI. NUMERICAL EXAMPLE

In order to demonstrate the accuracy and efficiency of
the proposed order reduction technique, a large intercon-
nect network consisting of 1448 nodes was considered.
The proposed algorithm was used to obtain a reduced order
macromodel of order 50 that matches the response of the
original system. In Fig. 4 and Fig. 5, the Y-parameters of
the original and reduced systems are shown to be matching
with no noticeable difference. In order to obtain a similar
accuracy using Krylov subspace techniques a system of or-
der 150 is required. The proposed method therefore was
able to eliminate 100 redundant states thus reducing the or-
der of the system by 67% compared to conventional Kry-
lov methods.

To illustrate the computational efficiency of the reduced-
order system, the interconnect network was connected to
nonlinear terminations as shown in Fig. 3. The simulation
results for the original and reduced systems at the output
node (Vout) and at node n2 are compared in Fig. 6 and Fig.
7. The transient simulation of the reduced system was 77
times faster than that of the original system with almost no
loss of accuracy.

Fig. 3. Large interconnect network with nonlinear termination.

VII. CONCLUSION

In this paper, a multi-level order reduction technique was
presented. The new method introduces a second level of re-
duction that eliminates the redundant poles obtained by
Krylov subspace methods. Furthermore, the macromodel
produced by the proposed algorithm is passive, and there-
fore stable in nonlinear transient simulations.
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i

λ
i
Ĝv
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Fig. 4. Comparison of Y11 of the original and reduced systems

Fig. 5. Comparison of Y12 of the original and reduced systems

Fig. 6. Transient response at node n2

Fig. 7. Transient response at the output node (Vout)
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